Skip to main content

Internet Of Things Basics (Part-4)

How propagator nodes will work in communicating devices in IOT: As noted previously, replicating even this highly efficient chirp protocol traffic indiscriminately throughout the IoT would clearly choke the network, so intelligence must be applied at levels above the individual end devices.

This is the responsibility of propagator nodes, which are devices that create an overarching network topology to organize the sea of machine-to-machine interactions that make up the Internet of Things.
  • Propagator nodes are typically a combination of hardware and software distantly similar to WiFi access points. They handle "local" end devices, meaning that they interact with end devices essentially within the (usually) wireless transmission range of the propagator node. They can be specialized or used to receive chirps from a wide array of end devices. Eventually, there would be tens or perhaps hundreds of thousands of propagator nodes in a city like Las Vegas. 
  • Propagator nodes will use their knowledge of adjacencies to form a near-range picture of the network. They will locate in-range nearby propagator nodes, as well as end devices and integrator functions either attached directly to or reached via those propagator nodes. This information is used to create the network topology: eliminating loops and creating alternate paths for survivability.

The propagator nodes will intelligently package and prune the various chirp messages before broadcasting them to adjacent nodes. Examining the public markers, the simple checksum, and the "arrow" of transmission (toward end devices or toward integrator functions), damaged or redundant messages will be discarded. Groups of messages that are all to be propagated via an adjacent node may be bundled into one "meta" message-a small data "stream"-for efficient transmission. Arriving "meta" messages may be unpacked and repacked.

Some classes of propagator nodes will contain a software publishing agent. This publishing agent interacts with particular integrator functions to optimize data forwarding on behalf of the integrator. Propagator nodes with publishing agents may be "biased" to forward certain information in particular directions based on routing instructions passed down from the integrator functions interested in communicating with a particular functional, temporal, or geographic "neighborhood" of end devices. It is the integrator functions that will dictate the overall communications flow based on their needs to get data or set parameters in a neighborhood of IoT end devices.


Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.

What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:

EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.

CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. 
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice