Skip to main content

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…

What is Elastic Nature in Cloud Computing

What is Elastic Nature in Cloud Computing
#What is Elastic Nature in Cloud Computing:
Natural clouds are indeed elastic, expanding and contracting based on the force of the winds carrying them. The cloud is similarly elastic, expanding and shrinking based on resource usage and cloud tenant resource demands. The physical resources (computing, storage, networking, etc.) deployed within the data center or across data centers and bundled as a single cloud usually do not change that fast.
This elastic nature, therefore, is something that is built into the cloud at the software stack level, not the hardware.
Best cloud computing example: The classic promise of the cloud is to make compute resources available on demand, which means that theoretically, a cloud should be able to scale as a business grows and shrink as the demand diminishes. Consider here, for example, Amazon.com during Black Friday. There's a spike in inbound traffic, which translates into more memory consumption, increased network density, and increased compute resource utilization. If Amazon.com had, let's say, 5 servers and each server could handle up to 100 users at a time, the whole deployment would have peak service capacity of 500 users. During the holiday season, there's an influx of 1,000 users, which is double the capacity of what the current deployment can handle.

If Amazon were smart, it would have set up 5 additional (or maybe 10) servers within its data center in anticipation of the holiday season spike. This would mean physically provisioning 5 or 10 machines, setting them up, and connecting with the current deployment of 5 servers. Once the season is over and the traffic is back to normal, Amazon doesn't really need those additional 5 to 10 servers it brought in before the season. So either they stay within the data center sitting idle and incurring additional cost or they can be rented to someone else.

What we just described is what a typical deployment looked like pre-cloud. There was unnecessary physical interaction and manual provisioning of physical resources. This is inefficient and something that cannot be linearly scaled up. Imagine doing this with millions of users and hundreds or even thousands of servers. Needless to say, it would be a mess. This manual provisioning is not only inefficient, it's also financially infeasible for startups because it requires investing significant capital in setting up or co-locating to a data center and dedicated personnel who can manually handle the provisioning.

This is what the cloud has replaced. It has enabled small, medium, and large teams and enterprises to provision and then decommission compute, network, and memory resources, all of which are physical, in an automated way, which means that you can now scale up your resources just in time to serve the traffic spike and then wind down the additional provisioned resources, effectively just paying for the time that your application served the spike with increased resources. This automated resource allocation and deallocation is what makes a cloud elastic.

Related: Cloud computing jobs

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:
EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.
CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice