Skip to main content

The best 5 points that you can do with R

#5-key-points-in-r
#5-key-points-in-r:
As a R developer in data analytics you should know what all the key points you can do with R language. R is very prominent language it can be used very much in data science.

Vectors and assignment
R operates on named data structures. The simplest such structure is the numeric vector, which is a single entity consisting of an ordered collection of numbers. To set up a vector named x,say, consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command
> x <- 21.7="" 3.1="" 5.6="" 6.4="" c="" p="">This is an assignment statement using the function c() which in this context can take an arbitrary number of vector arguments and whose value is a vector got by concatenating its arguments end to end.

Reading data from files
Large data objects will usually be read as values from external files rather than entered during an R session at the keyboard. R input facilities are simple and their requirements are fairly strict and even rather inflexible. There is a clear presumption by the designers of R that you will be able to modify your input files using other tools, such as file editors or Perl1 to fit in with the requirements of R. Generally this is very simple.
If variables are to be held mainly in data frames, as we strongly suggest they should be, an entire data frame can be read directly with the read.table() function. There is also a more primitive input function, scan(), that can be called directly. For more details on importing data into R and also exporting data, see the R Data Import/Export manual.

Accessing builtin datasets
Around 100 datasets are supplied with R (in package datasets), and others are available in packages (including the recommended packages supplied with R). To see the list of datasets currently available use data()
All the datasets supplied with R are available directly by name. However, many packages still use the obsolete convention in which data was also used to load datasets into R, for example data(infert) and this can still be used with the standard packages (as in this example). In most cases this will load an R object of the same name. However, in a few cases it loads several objects, so see the on-line help for the object to see what to expect.

Grouped expressions
R is an expression language in the sense that its only command type is a function or expression which returns a result. Even an assignment is an expression whose result is the value assigned,
and it may be used wherever any expression may be used; in particular multiple assignments are possible. Commands may be grouped together in braces, {expr_1; ...; expr_m}, in which case the value of the group is the result of the last expression in the group evaluated. Since such a group is also an expression it may, for example, be itself included in parentheses and used a part of an even larger expression, and so on

Writing your own functions
As we have seen informally along the way, the R language allows the user to create objects of mode function. These are true R functions that are stored in a special internal form and may be used in further expressions and so on. In the process, the language gains enormously in power,convenience and elegance, and learning to write useful functions is one of the main ways to make your use of R comfortable and productive. It should be emphasized that most of the functions supplied as part of the R system, such as mean(), var(), postscript() and so on, are themselves written in R and thus do not differ materially from user written functions.
A function is defined by an assignment of the form
> name <- ...="" arg_1="" arg_2="" expression="" function="" p="">The expression is an R expression, (usually a grouped expression), that uses the arguments,arg i, to calculate a value. The value of the expression is the value returned for the function. A call to the function then usually takes the form name(expr_1, expr_2, ...) and may occur anywhere a function call is legitimate.

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:

EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.

CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. 
Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice