Skip to main content

Hadoop real process to handle massive unstructured data

Hadoop real process
Hadoop Real Process
Hadoop comes into picture to process large volume of Unstructured data. The structured data is already taken care by traditional databases.

Traditional relational databases have been able to store massive data sets for a long time. An Oracle 10g database can store over 8 Petabytes while for many years DB2 databases have been capable of storing well over 500 Petabytes. Of course, this is all theoretical. No customer has an Oracle or DB2 database that approaches sizes even close to that. Why? Because the speed, or velocity, at which data can be loaded and queries can be executed approaches zero well before then.

Similarly, all traditional relational databases can store any variety of data as text or binary large objects. The problem is that large volumes of unstructured data cannot be moved fast enough to enable rapid search and retrieval.

Will data warehouse and ETL continue in the age of Hadoop

Running constant and predictable workloads is what your existing data warehouse has been all about. And as a solution for meeting the demands of structured data—data that can be entered, stored, queried, and analyzed in a simple and straightforward manner—the data warehouse will continue to be a viable solution.

Storing, managing and analyzing massive volumes of semi-structured and unstructured data is what Hadoop was purpose-built to do. Unlike structured data, found within the tidy confines of records, spreadsheets and files, semi-structured and unstructured data is raw, complex, and pours in from multiple sources such as emails, text documents, videos, photos, social media posts, Twitter feeds, sensors and clickstreams.

Hadoop and MapReduce enable organizations to distribute the search simultaneously across many machines, reducing the time to find relevant nuggets of information in large volumes of data in a scalable way. That’s why Hadoop is being adopted by bleeding edge enterprises moving into the multi-petabyte club. There are already some environments that break the 100 Petabyte level, and theoretically can continue to scale.


Popular posts from this blog

Top 20 ultimate ETL Questions really good for interviews

How to print/display the first line of a file?  there are many ways to do this. However the easiest way to display the first line of a file is using the [head] command.  $> head -1 file. Txt no prize in guessing that if you specify [head -2] then it would print first 2 records of the file.  another way can be by using [sed] command. [sed] is a very powerful text editor which can be used for various text manipulation purposes like this.  $> sed '2,$ d' file. Txt how does the above command work?  The 'd' parameter basically tells [sed] to delete all the records from display from line 2 to last line of the file (last line is represented by $ symbol). Of course it does not actually delete those lines from the file, it just does not display those lines in standard output screen. So you only see the remaining line which is the 1st line.  how to print/display the last line of a file?  the easiest way is to use the [tail] command.  $> tail -1 file. Txt if you want to do it using…

The unique helpful SAN architecture simplified one

Storage Area Networks (SANs)

A SAN is connected behind the servers. SANs provide block-level access to shared data storage. Block level access refers to the specific blocks of data on a storage device as opposed to file level access. One file will contain several blocks. 

SANs provide high availability and robust business continuity for critical data environments. SANs are typically switched fabric architectures using Fibre Channel (FC) for connectivity. The term switched fabric refers to each storage unit being connected to each server via multiple SAN switches also called SAN directors which provide redundancy within the paths to the storage units. This provides additional paths for communications and eliminates one central switch as a single point of failure.Ethernet has many advantages similar to Fibre Channel for supporting SANs. Some of these include high speed, support of a switched fabric topology, widespread interoperability, and a large set of management tools. In a storage ne…

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…