Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

5 Key Ideas on SAS Banking Analytics

SAS is providing solutions for banking. Getting away with financial crime just got harder. The latest SAS Financial Crimes Suite arms institutions to detect potential suspicious activity more efficiently than ever.
A new customer due diligence solution within the suite more accurately detects changes in a customer’s risk profile. Enhanced anti-money laundering and case management capabilities also make it easier to have a complete view of threats across an institution’s financial crimes investigation unit.

“A comprehensive view of potential threats will help in efforts to thwart criminals from successful attempts of hiding illicit funds,” says James Wester, global payments research director at IDC Financial Insights.

 “A technology infrastructure with customer risk rating and high-performance analytics will help speed detection and investigation in all channels.”.

SAS Analytics Suite for Banking Crimes

  1. Today’s rigorous regulatory environment requires banks to move quickly with confidence. SAS Financial Crimes Suite uses a visual scenario designer to recommend optimal detection models. The designer instantly assesses the impact of potential scenarios and risk-rating changes.
  2. In-memory architecture speeds analysis of real-time testing environments, reducing guesswork through improved model efficiency. 
  3. To identify potential money launderers and people funneling money to terrorists, institutions must constantly assess customer activity. The SAS Customer Due Diligence does this by weighing all customer data to set baseline expectations. 
  4. Data management features easily integrate key customer attributes from external sources and detect incriminating relationships. 
  5. The regulatory reporting interface controls both workflow and investigations. Context-aware analytics intercept and assess events for possible risk. The resulting baseline customer score can be automatically updated with a new risk rating based on behavior changes
Related


Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)