Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

Analytics on Fly - Read It

The basis for real-time analytics is to have all resources at disposal in the moment they are called for . So far, special materialized data structures, called cubes, have been created to efficiently serve analytical reports. Such cubes are based on a fixed number of dimensions along which analytical reports can define their result sets. Consequently, only a particular set of reports can be served by one cube. If other dimensions are needed, a new cube has to be created or existing ones have to be extended. In the worst case, a linear increase in the number of dimensions of a cube can result in an exponential growth of its storage requirements. Extending a cube can result in a deteriorating performance of those reports already using it. The decision to extend a cube or build a new one has to be considered carefully. 

In any case, a wide variety of cubes may be built during the lifetime of a system to serve reporting, thus increasing storage requirements and also maintenance efforts.

Instead of working with a predefined set of reports, business users should be able to formulate ad-hoc reports. Their playground should be the entire set of data the company owns, possibly including further data from external sources. Assuming a fast in-memory database, no more pre-computed materialized data structures are needed. As soon as changes to data are committed to the database, they will be visible for reporting. 

The preparation and conversion steps of data if still needed for reports are done during query execution and computations take place on the fly. Computation on the fly during reporting on the basis of cubes that do not store data, but only provide the interface for reporting, solves a problem that has existed up to now and allows for performance optimization of all analytical reports likewise

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)