Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

Big Data:Top Hadoop Interview Questions (2 of 5)

Frequently asked Hadoop interview questions.


1. What is Hadoop?Hadoop is a framework that allows users the power of distributed computing.

2.What is the difference between SQL and Hadoop?

SQL is allowed to work with structured data. But SQL is most suitable for legacy technologies. Hadoop is suitable for unstructured data. And, it is well suited for modern technologis.
Hadoop

3. What is Hadoop framework?

It is distributed network of commodity servers(A server can contain multiple clusters, and a cluster can have multiple nodes)

4. What are 4 properties of Hadoop?

Accessible-Hadoop runs on large clusters of commodity machinesRobust-An assumption that low commodity machines cause many machine failures. But it handles these tactfully. Scalable-Hadoop scales linearly to handle larger data by adding more nodes to the cluster. Simple-Hadoop allows users to quickly write efficient parallel code

5. What kind of data Hadoop needs?

Traditional RDBMS having relational structure with data resides in tables. In Hadoop. data should be in Key,Value pair.

6. Is Hadoop suitable for on the fly processing?

Hadoop is not suitable. It is suitable only for off-line processing. That means, we can not use Hadoop on active web logs. We can use it on web logs data,which already generated. So, in this property Hadoop is matching to traditional data warehouses.

7. What is Map reduce?

Map reduce is a data processing model, which contain mappers, and reducers. It takes unstructred data as input, and create as Key,Value pairs for processing on Hadoop.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)