Featured Post

Claude Code for Beginners: Step-by-Step AI Coding Tutorial

Image
 Artificial Intelligence is changing how developers write software. From generating code to fixing bugs and explaining complex logic, AI tools are becoming everyday companions for programmers. One such powerful tool is Claude Code , powered by Anthropic’s Claude AI model. If you’re a beginner or  an experienced developer looking to improve productivity, this guide will help you understand  what Claude Code is, how it works, and how to use it step-by-step . Let’s get started. What is Claude Code? Claude Code is an AI-powered coding assistant built on top of Anthropic’s Claude models. It helps developers by: Writing code from natural language prompts Explaining existing code Debugging errors Refactoring code for better readability Generating tests and documentation In simple words, you describe what you want in plain English, and Claude Code helps turn that into working code. It supports multiple programming languages, such as: Python JavaScri...

Oracle 12C 'Bitmap Index' benefits over B-tree Index

Oracle 12C 'Bitmap Index' benefits over B-tree Index
#Oracle 12C 'Bitmap Index' benefits over B-tree Index:
A bitmap index has a significantly different structure from a B-tree index in the leaf node of the index. It stores one string of bits for each possible value (the cardinality) of the column being indexed.

Note: One string of BITs means -Each tupple of possible value it assigns '1' bit in a string.So, all the BITs become a string ( This is an example, on which column you created BIT map index)

The length of the string of bits is the same as the number of rows in the table being indexed.

In addition to saving a tremendous amount of space compared to traditional indexes, a bitmap index can provide dramatic improvements in response time because Oracle can quickly remove potential rows from a query containing multiple WHERE clauses long before the table itself needs to be accessed.

Multiple bitmaps can use logical AND and OR operations to determine which rows to access from the table.

Although you can use a bitmap index on any column in a table, it is most efficient when the column being indexed has a low cardinality, or number of distinct values.

For example, the GENDER column in the PERS table will be either NULL, M, or F. The bitmap index on the GENDER column will have only three bitmaps stored in the index. On the other hand, a bitmap index on the LAST_NAME column will have close to the same number of bitmap strings as rows in the table itself. The queries looking for a particular last name will most likely take less time if a full table scan is performed instead of using an index. In this case, a traditional B-tree non-unique index makes more sense.

A variation of bitmap indexes called bitmap join indexes creates a bitmap index on a table column that is frequently joined with one or more other tables on the same column. This provides tremendous benefits in a data warehouse environment where a bitmap join index is created on a fact table and one or more dimension tables, essentially pre-joining those tables and saving CPU and I/O resources when an actual join is performed.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Step-by-Step Guide to Reading Different Files in Python

5 SQL Queries That Popularly Used in Data Analysis