Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

AWS EMR Vs. Hadoop: 5 Top Differences

With Amazon Elastic MapReduce Amazon EMR, you can analyze and process vast amounts of data. It distributes the computational work across a cluster of virtual servers ( run in the Amazon cloud). An open-source framework of Hadoop manages it. 



AWS EMR Vs. Hadoop




Amazon EMR - Elastic MapReduce, The Unique Features


  • Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS.
  • For instance, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.
  • Also, you can move data into and out of DynamoDB using Amazon EMR and Hive. That orchestrates by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do?


Hadoop uses a distributed processing architecture called MapReduce, in which a task maps to a set of servers for processing.


  • The results of the computation performed by those servers reduce to a single output set.
  • One node, designated as the master node, controls the distribution of tasks. The following diagram shows a Hadoop cluster with the master node directing a group of slave nodes which process the data.
  • One Master node handles multiple slave nodes. All open-source projects run on the Hadoop architecture can also be run on Amazon EMR. The most popular applications, such as Hive, Pig, HBase, DistCp, and Ganglia, are already integrated with Amazon EMR.


By running Hadoop on the Amazon EMR, you will get the following benefits of the cloud:


  1. The ability to provision clusters of virtual servers within minutes.
  2. You can scale the number of virtual servers in your cluster to manage your computation needs and only pay for what you use. 
  3. Integration with other AWS services.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)