Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

How to Show Data Science Project in Resume Correctly

The data scientist resume should have mentioned the project correctly. Here are my ideas on how to show the project in the resume.

Resume: How to Show Data Science Project


How to Show Data Science Project?

1. Preparation of Resume

The first step for an interview for any project is you need Resume. You need to tell clearly about your resume. 


2. Answering about Project. 

In interviews, you will be asked questions about your project. So the second step is you need to be in a position to explain the project.


3. Answering your Project Role. 

The third point is you need to explain the roles you performed in your data science project. If you mention the roles correctly, then, you will have a 100% chance to shortlist your resume.

Based on your experience your resume can be 1 page or 2 pages

4. Technologies in the Resume.

In interviews, again they will be asked how you used different tools to complete your data science project. So, you need to be in a position to explain how you used different options present in the tools. 

Sometimes, in interviews, they may ask about the specific role in Tools specifically you used. You should be in a position to answer these questions too.

How to Prepare Resume. 

  1. Write a clear description.
  2. Write a specific role.
  3. Explain Tools. 
  4. Write about data flow.

1. Write a Clear Description.  In any data science project, you will find a few things like Client name, the expectation of the client, and what you are going to deliver. These things you need to present clearly in your Resume. 


2. Write Specific Roles. Roles. To convince your interviewer, you need to tell about your team roles and your specific role. In general, you can find the following roles:
  • Architect.
  • Data scientist.
  • Business Analyst.
  • Development team.
  • Testing Team.
  • Integration testing team.
  • Production release team.

3. Explain Tools. You need to present all the Tools your project is using and your specific tools. Then, in the face-to-face interview, you need to tell what options you used to achieve what.

For example, I used some integration tool, to receive data to the development region, and to send out after unit testing. If you explain, these key points, I can say, 100% sure, you will be selected.

4. Write about data flow. You need to explain how data is coming, is it in the sequential data set or document data. Something you need to tell clearly.

You also need to tell, after unit testing, which forms you will send the data to the next region. If you know this flow correctly, then you can convince easily your interviewer.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)