Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

Here is Hadoop MapReduce DataFlow Tutorial

Here are the six stages of MapReduce. The MapReduce is critical for your data processing needs. Traditionally, the whole file needs to read once then divided manually, but it is not convenient. With that respect, Hadoop provides the facility to read files (ignoring their size) line-for-line by using offset and key-value.

Explained the dataflow in Hadoop MapReducer

MapReduce dataflow Quick Tutorial


1. Dataflow Diagram



How a Mapreduce process in Hadoop divides input and processes it, you will learn in this post.


2. MapReduce Stages


MapReduce receives input and processes it. Here are the six stages of processing. It is helpful for your interviews and project.


MapReduce Stage-1


Take the file as input for processing purposes. Any file will consist of a group of lines. These lines containing key-value pairs of data. The whole file can be read out with this method.

MapReduce Stage-2


In the next step, the file will be in "splitting" mode. This mode will divide the file into key, value pair of data. This time key will be offset and data will be a valuable part of the program. Each line will be read individually so there is no need to split data manually.

MapReduce Stage-3


The further step is to process the value of each line with an associate from counting numbers. Each individual that is separated from a space counted with the number and that number is written with each key. This is the logic of "mapping" that programmers need to write.

MapReduce Stage-4


After that shuffling is performed and with this, each key gets associated with the group of numbers that are involved in the mapping section. Now scenario becomes key with string and value will be a list of numbers. This will go as input to the reducer.

MapReduce Stage-5


In the reducer phase, whole numbers are counted and each key associated with final counting is the sum of all numbers which leads to the final result.

MapReduce Stage-6


Output of the reducer phase will lead to the final result. This final result will have counting of individual word count. This is independent of the size of the file used for processing.


Keep Reading
  1. Big Data and Hadoop: Learn by Example

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)