Featured Post

Claude Code for Beginners: Step-by-Step AI Coding Tutorial

Image
 Artificial Intelligence is changing how developers write software. From generating code to fixing bugs and explaining complex logic, AI tools are becoming everyday companions for programmers. One such powerful tool is Claude Code , powered by Anthropic’s Claude AI model. If you’re a beginner or  an experienced developer looking to improve productivity, this guide will help you understand  what Claude Code is, how it works, and how to use it step-by-step . Let’s get started. What is Claude Code? Claude Code is an AI-powered coding assistant built on top of Anthropic’s Claude models. It helps developers by: Writing code from natural language prompts Explaining existing code Debugging errors Refactoring code for better readability Generating tests and documentation In simple words, you describe what you want in plain English, and Claude Code helps turn that into working code. It supports multiple programming languages, such as: Python JavaScri...

The Quick and Easy Way to Analyze Numpy Arrays

The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array.


NumPy Python

Sum

You can find the sum of Numpy arrays using the np.sum() function. 
For example: 

import numpy as np 
a = np.array([1,2,3,4,5]) 
b = np.array([6,7,8,9,10]) 
result = np.sum([a,b]) 
print(result) 
# Output will be 55


Mean


You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array. 

For example, the mean of a Numpy array of [1,2,3,4,5] would be 
result = np.mean([1,2,3,4,5]) 
print(result) 

#Output: 3.0


Standard Deviation


To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a parameter and returns the standard deviation of that given array. 
For example: 
import numpy as np 

arr = np.array([1, 2, 3, 4, 5]) 
std_dev = np.std(arr) 
print(std_dev) 

# Output: 1.5811388300841898

Max


To find the max Numpy Array, you can use the max() function from the Numpy library. 
For example, to find the max value in an array of numbers: 

import numpy as np 
arr = np.array([1, 3, 4, 6, 10]) 
print(np.max(arr)) 
This would output 10, which is the max value of the array.


Min


The easiest way to find the minimum value of a Numpy array is with the np.min() function. This function takes in a Numpy array and returns the minimum value in the array. 

Example: 
import numpy as np 
a = np.array([1, 5, 10, 100, 200]) 
min_val = np.min(a)
 print(min_val) 
# Output: 1

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

Step-by-Step Guide to Reading Different Files in Python

5 SQL Queries That Popularly Used in Data Analysis