Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

How to Handle Spaces in PySpark Dataframe Column

In PySpark, you can employ SQL queries by importing your CSV file data to a DataFrame. However, you might face problems when dealing with spaces in column names of the DataFrame. Fortunately, there is a solution available to resolve this issue.


SQL Space in Column Names


Reading CSV file to Dataframe

Here is the PySpark code for reading CSV files and writing to a DataFrame.

#initiate session
spark = SparkSession.builder \
.appName("PySpark Tutorial") \
.getOrCreate()


#Read CSV file to df dataframe
data_path = '/content/Test1.csv'
df = spark.read.csv(data_path, header=True, inferSchema=True)

#Create a Temporary view for the DataFrame
df2.createOrReplaceTempView("temp_table")

#Read data from the temporary view
spark.sql("select * from temp_table").show()


Output
--------+-----+---------------+---+
|Student| Year|Semester1|Semester2|
| ID | | Marks | Marks |
+----------+-----+---------------+ | si1 |year1|62.08| 62.4| | si1 |year2|75.94| 76.75| | si2 |year1|68.26| 72.95| | si2 |year2|85.49| 75.8| | si3 |year1|75.08| 79.84| | si3 |year2|54.98| 87.72| | si4 |year1|50.03| 66.85| | si4 |year2|71.26| 69.77| | si5 |year1|52.74| 76.27| | si5 |year2|50.39| 68.58| | si6 |year1|74.86| 60.8| | si6 |year2|58.29| 62.38| | si7 |year1|63.95| 74.51| | si7 |year2|66.69| 56.92| +----------+-----+-------------+

Fix for space in the column name


Suppose the column name "Student ID" contains a space. To prevent errors, you must modify your SQL query.

spark.sql("select `Student ID` as sid from temp_table").show()

Output:

+---+ |sid| +---+ |si1| |si1| |si2| |si2| |si3| |si3| |si4| |si4| |si5| |si5| |si6| |si6| |si7| |si7| +---+


Related

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide