Featured Post

How to Read a CSV File from Amazon S3 Using Python (With Headers and Rows Displayed)

Image
  Introduction If you’re working with cloud data, especially on AWS, chances are you’ll encounter data stored in CSV files inside an Amazon S3 bucket . Whether you're building a data pipeline or a quick analysis tool, reading data directly from S3 in Python is a fast, reliable, and scalable way to get started. In this blog post, we’ll walk through: Setting up access to S3 Reading a CSV file using Python and Boto3 Displaying headers and rows Tips to handle larger datasets Let’s jump in! What You’ll Need An AWS account An S3 bucket with a CSV file uploaded AWS credentials (access key and secret key) Python 3.x installed boto3 and pandas libraries installed (you can install them via pip) pip install boto3 pandas Step-by-Step: Read CSV from S3 Let’s say your S3 bucket is named my-data-bucket , and your CSV file is sample-data/employees.csv . ✅ Step 1: Import Required Libraries import boto3 import pandas as pd from io import StringIO boto3 is...

How to Fill Nulls in Pandas: bfill and ffill

In Pandas, bfill and ffill are two important methods used for filling missing values in a DataFrame or Series by propagating the previous (forward fill) or next (backward fill) valid values respectively. These methods are particularly useful when dealing with time series data or other ordered data where missing values need to be filled based on the available adjacent values.


Bfill and Ffill methods


ffill (forward fill):

When you use the ffill method on a DataFrame or Series, it fills missing values with the previous non-null value in the same column. It propagates the last known value forward.

This method is often used to carry forward the last observed value for a specific column, making it a good choice for time series data when the assumption is that the value doesn't change abruptly.

Example:


import pandas as pd


data = {'A': [1, 2, None, 4, None, 6],

        'B': [None, 'X', 'Y', None, 'Z', 'W']}


df = pd.DataFrame(data)

print(df)

# Output:

#      A     B

# 0  1.0  None

# 1  2.0     X

# 2  NaN     Y

# 3  4.0  None

# 4  NaN     Z

# 5  6.0     W


# Forward fill missing values

df_filled = df.ffill()

print(df_filled)

# Output:

#      A     B

# 0  1.0  None

# 1  2.0     X

# 2  2.0     Y

# 3  4.0     Y

# 4  4.0     Z

# 5  6.0     W


bfill (backward fill):

The bfill method fills missing values with the next non-null value in the same column. It propagates the next known value backward.

Like ffill, this method can be useful in time series data, especially when values are missing at the beginning of the dataset.

Example:


import pandas as pd


data = {'A': [None, 2, None, 4, 5, None],

        'B': ['X', 'Y', None, None, 'Z', None]}


df = pd.DataFrame(data)

print(df)

# Output:

#      A     B

# 0  NaN     X

# 1  2.0     Y

# 2  NaN  None

# 3  4.0  None

# 4  5.0     Z

# 5  NaN  None


# Backward fill missing values

df_filled = df.bfill()

print(df_filled)

# Output:

#      A     B

# 0  2.0     X

# 1  2.0     Y

# 2  4.0  None

# 3  4.0     Z

# 4  5.0     Z

# 5  NaN  None

These methods can be very useful for handling missing data when the order of the data is important, such as in time series analysis.

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)