Skip to main content

How To Master Life Cycle Of Scrum In Only One Day!

Scrum is an iterative, incremental framework for projects and product or application development. It structures development in cycles of work called Sprints.

These iterations are no more than one month each, and take place one after the other without pause. The Sprints are timeboxed – they end on a specific date whether the work has been completed or not, and are never extended. At the beginning of each Sprint, a cross-functional team selects items 5 (customer requirements) from a prioritized list.

Related: Top rated jobs in Scrum

The team commits to complete the items by the end of the Sprint. During the Sprint, the chosen items do not change. Every day the team gathers briefly to inspect its progress, and adjust the next steps needed to complete the work remaining. At the end of the Sprint, the team reviews the Sprint with stakeholders, and demonstrates what it has built.

(Frame work of Scrum)
People obtain feedback that can be incorporated in the next Sprint. Scrum emphasizes working product at the end of the Sprint that is really “done”; in the case of software, this means code that is integrated, fully tested and potentially shippable.

Related: Scrum vs Agile Key Differences

Key roles, artifacts, and events are summarized in Figure 1. A major theme in Scrum is “inspect and adapt.” Since development inevitably involves learning, innovation, and surprises, Scrum emphasizes taking a short step of development, inspecting both the resulting product and the efficacy of current practices, and then adapting the product goals and process practices. Repeat forever.

Related:

Comments

Popular posts from this blog

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…

The Sqoop in Hadoop story to process structural data

Why Sqoop you need while working on Hadoop-The Sqoop and its primary reason is to import data from structural data sources such as Oracle/DB2 into HDFS(also called Hadoop file system).
To our readers, I have collected a good video from Edureka which helps you to understand the functionality of Sqoop.

The comparison between Sqoop and Flume

The Sqoop the word came from SQL+Hadoop Sqoop word came from SQL+HADOOP=SQOOP. And Sqoop is a data transfer tool. The main use of Sqoop is to import and export the large amount of data from RDBMS to HDFS and vice versa. List of basic Sqoop commands Codegen- It helps to generate code to interact with database records.Create-hive-table- It helps to Import a table definition into a hiveEval- It helps to evaluateSQL statement and display the resultsExport-It helps to export an HDFS directory into a database tableHelp- It helps to list the available commandsImport- It helps to import a table from a database to HDFSImport-all-tables- It helps to import tables …

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…