Posts

Showing posts with the label Lists

Featured Post

PowerCurve for Beginners: A Comprehensive Guide

Image
PowerCurve is a complete suite of decision-making solutions that help businesses make efficient, data-driven decisions. Whether you're new to PowerCurve or want to understand its core concepts, this guide will introduce you to chief features, applications, and benefits. What is PowerCurve? PowerCurve is a decision management software developed by Experian that allows organizations to automate and optimize decision-making processes. It leverages data analytics, machine learning, and business rules to provide actionable insights for risk assessment, customer management, fraud detection, and more. Key Features of PowerCurve Data Integration – PowerCurve integrates with multiple data sources, including internal databases, third-party data providers, and cloud-based platforms. Automated Decisioning – The platform automates decision-making processes based on predefined rules and predictive models. Machine Learning & AI – PowerCurve utilizes advanced analytics and AI-driven models ...

Best Practices for Handling Duplicate Elements in Python Lists

Image
Here are three awesome ways that you can use to remove duplicates in a list. These are helpful in resolving your data analytics solutions.  01. Using a Set Convert the list into a set , which automatically removes duplicates due to its unique element nature, and then convert the set back to a list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = list(set(original_list)) 02. Using a Loop Iterate through the original list and append elements to a new list only if they haven't been added before. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] for item in original_list:     if item not in unique_list:         unique_list.append(item) 03. Using List Comprehension Create a new list using a list comprehension that includes only the elements not already present in the new list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] [unique_list.append(item) for item in original_list if item not in unique_list] All th...

Numpy Array Vs. List: What's the Difference

Image
Here are the differences between List and NumPy Array. Both store data, but technically these are not the same. You'll find here where they differ from each other. Python Lists Here is all about Python lists: Lists can have data of different data types. For instance, data = [3, 3.2, 4.6, 6, 6.8, 9, “hello”, ‘a’] Operations such as subtraction, multiplying, and division allow doing through loops Storage space required is more, as each element is considered an object in Python Execution time is high for large datasets Lists are inbuilt data types How to create array types in Python NumPy Arrays Here is all about NumPy Arrays: Numpy arrays are containers for storing only homogeneous data types. For example: data= [3.2, 4.6, 6.8]; data=[3, 6, 9]; data=[‘hello’, ‘a’] Numpy is designed to do all mathematical operations in parallel and is also simpler than Python Numpy storage space is very much less compared to the list due to the practice of homogeneous data type Execution time is ...

Sets Vs Lists Python Programmer Tips

Image
Sets are only useful when trying to ensure unique items are preserved. Before sets were available, it was common to process items and check if they exist in a list (or dictionary) before adding them. List example Here unique is an empty list. Every time I compare with this list, and if it is not duplicated then the input item will append to the unique list.  >>> unique = []  >>> for name in ['srini', 'srini', 'rao', 'srini']:  ... if name not in unique:  ... unique.append(name)  ... >>> unique ['srini', 'rao'] There is no need to do this when using sets. Instead of appending you add to a set: Set example >>> for name in ['srini', 'srini', 'rao', 'srini']: ... unique.add(name)  ...  >>> unique {'srini', 'rao'} Just like tuples and lists, interacting with sets have some differences on how to access their items. You can't index them like lists an...