Posts

Showing posts with the label Regular Expression

Featured Post

How to Check Column Nulls and Replace: Pandas

Image
Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

Python Regex: The 5 Exclusive Examples

Image
 Regular expressions (regex) are powerful tools for pattern matching and text manipulation in Python. Here are five Python regex examples with explanations: 01 Matching a Simple Pattern import re text = "Hello, World!" pattern = r"Hello" result = re.search(pattern, text) if result:     print("Pattern found:", result.group()) Output: Output: Pattern found: Hello This example searches for the pattern "Hello" in the text and prints it when found. 02 Matching Multiple Patterns import re text = "The quick brown fox jumps over the lazy dog." patterns = [r"fox", r"dog"] for pattern in patterns:     if re.search(pattern, text):         print(f"Pattern '{pattern}' found.") Output: Pattern 'fox' found. Pattern 'dog' found. It searches for both "fox" and "dog" patterns in the text and prints when they are found. 03 Matching Any Digit   import re text = "The price of the