Posts

Showing posts with the label datalake

Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

Here's to Know Data lake Vs Database

Image
In a data lake, data stored internally in a repository. You can call it a blob. The data in the lake a no-format data, but you need a schema for the database.  Data lake Repository Database In the database, the Schema definition you need before you store data on it. It should follow Codd's rules. Here data is completely formatted. The data stores here in Tables, so you need SQL language to read the records. Poor performance in terms of scalability. Data lake It doesn't have any format - it's just a dump. You can send this dump to the Hadoop repository for data analysis. This repository can be incremental. You can build a database. The data lake is a dump of data with no format. It needs a pre-format before it sends for analytics. Data security and encryption: You need these before you send data to Hadoop. In real-time, you need to pre-process data. This data you need to send to the data warehouse to get insights.