Posts

Showing posts with the label SAS-Career Options

Featured Post

Python map() and lambda() Use Cases and Examples

Image
 In Python, map() and lambda functions are often used together for functional programming. Here are some examples to illustrate how they work. Python map and lambda top use cases 1. Using map() with lambda The map() function applies a given function to all items in an iterable (like a list) and returns a map object (which can be converted to a list). Example: Doubling Numbers numbers = [ 1 , 2 , 3 , 4 , 5 ] doubled = list ( map ( lambda x: x * 2 , numbers)) print (doubled) # Output: [2, 4, 6, 8, 10] 2. Using map() to Convert Data Types Example: Converting Strings to Integers string_numbers = [ "1" , "2" , "3" , "4" , "5" ] integers = list ( map ( lambda x: int (x), string_numbers)) print (integers) # Output: [1, 2, 3, 4, 5] 3. Using map() with Multiple Iterables You can also use map() with more than one iterable. The lambda function can take multiple arguments. Example: Adding Two Lists Element-wise list1 = [ 1 , 2 , 3 ]

SAS- Get the Right Training, Go get the Job

Image
sas career options Many people think analytics is about gathering data using software tools and creating dashboards and reports. However, analytics is much more. Analytics goes beyond data; its primary goal is to enable business decisions based on that data. This involves working with stakeholders to understand the gaps in the business and using this knowledge as a guide to manipulate data, derive useful insights, and make recommendations – all key actions to increase revenue and lower costs. Wherever you sit in your organization, what’s most important is the bottom line. And so whether you lead business or IT units or are in the trenches, the analytics profession has likely crossed your mind. What does it entail? Who are true analysts? How does one become an analyst? Those of you specifically in a data management, data warehousing or business intelligence role may wonder how to further develop your analytics career. On the surface, an “analytics career” can be quite broadly d