Showing posts with the label Social Analytics - How Marketers Will Use

Featured Post

How to Check Column Nulls and Replace: Pandas

Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

Social Analytics - How Marketers Will Use

Of all the windows through which a business can peer into an audience,  social media  seems most enticing. The breadth of subjects, range of observations, and, above all, the ability to connect and draw inferences make  social analytics  hugely exciting for anyone who is interested in understanding and influencing past, present and potential customers, employees, or even investors. As individuals leave traces of their activities - personal, social and professional - on the internet, they allow an unprecedented view into their lives, thoughts, influences and preferences. Social analytics attempts to draw useful understanding and inferences, which could be relevant to marketers, sales persons, HR managers, product designers, investors and so on. Thus, as social tools like Facebook, Twitter, LinkedIn, WhatsApp, and many more, host a plethora of social activities of many people, a humongous amount of data is generated about people's preferences, behaviour and sentiments. Like any da