Posts

Showing posts with the label greenplum

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

Greenplum Database basics in the age of Hadoop (1 of 2)

The Greenplum Database constructs on the basis of open origin database PostgreSQL. It firstly purposes like a information storage and uses a shared-nothing architecture|shared-nothing, astronomically collateral (computing)|massively collateral handling (MPP) design. How Greenplum works... In this design, information is partitioned athwart numerous section servers, and every one section controls and commands a clearly different part of the altogether data; there is no disk-level parting nor information argument amid sections. Greenplum Database’s collateral request optimizer changes every one request into a material implementation design. Greenplum’s optimizer utilizes a cost-based set of rules to appraise prospective implementation designs, bears a worldwide view of implementation athwart the computer array, and circumstances in the charges of moving information amid knots. The ensuing request designs hold customary relational database transactions like well like collateral