Showing posts with the label data processing

Featured Post

How to Check Column Nulls and Replace: Pandas

Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

SAP HANA: Top Data Processing Interview Questions

1. How parallel processing is achieved in SAP HANA? The phrase "divide and conquer" (derived from the Latin saying divide et impera) typically is used when a large problem is divided into a number of smaller, easier-to-solve problems. Regarding performance, processing huge amounts of data is a problem that can be solved by splitting the data into smaller chunks of data, which can be processed in parallel. 2.How data portioning will happen in SAP HANA? Although servers that are available today can hold terabytes of data in memory and provide up to eight processors per server with up to 10 cores per processor, the amount of data that is stored in an in-memory database or the computing power that is needed to process such quantities of data might exceed the capacity of a single server. To accommodate the memory and computing power requirements that go beyond the limits of a single server, data can be divided into subsets and placed across a cluster of servers, which forms a d