Posts

Showing posts with the label google mapreduce

Featured Post

Mastering flat_map in Python with List Comprehension

Image
Introduction In Python, when working with nested lists or iterables, one common challenge is flattening them into a single list while applying transformations. Many programming languages provide a built-in flatMap function, but Python does not have an explicit flat_map method. However, Python’s powerful list comprehensions offer an elegant way to achieve the same functionality. This article examines implementation behavior using Python’s list comprehensions and other methods. What is flat_map ? Functional programming  flatMap is a combination of map and flatten . It transforms the collection's element and flattens the resulting nested structure into a single sequence. For example, given a list of lists, flat_map applies a function to each sublist and returns a single flattened list. Example in a Functional Programming Language: List(List(1, 2), List(3, 4)).flatMap(x => x.map(_ * 2)) // Output: List(2, 4, 6, 8) Implementing flat_map in Python Using List Comprehension Python’...

IBM PML Vs Google MapReduce why you need to read

Image
IBM Parallel Machine Learning Toolbox (PML) is similar to that of Google's MapReduce programming model (Dean and Ghemawat, 2004) and the open source Hadoop system,which is to provide Application Programming Interfaces (APIs) that enable programmers who have no prior experience in parallel and distributed systems to nevertheless implement parallel algorithms with relative ease. Google MapReduce Vs IBM PML Like MapReduce and Hadoop, PML supports associative-commutative computations as its primary parallelization mechanism .  Unlike MapReduce and Hadoop, PML fundamentally assumes that learning algorithms can be iterative in nature, requiring multiple passes over data. The ability to maintain the state of each worker node between iterations, making it possible, for example, to partition and distribute data structures across workers Efficient distribution of data, including the ability of each worker to read a subset of the data, to sample the data, or to scan the entire data...