14 Top Data Pipeline Key Terms Explained
![Image](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhdmOU8tQz0fwOUDLdqhykrc0Mzj1-Au3UL4u5Mx0oc_Gn4RnflVrzzxqjRtwKLXlac05zUe95_kiJqmnEzInhf93s_AbZCAWBsz4ieSDMiejjquwFxo58iy_g4-vgftNj7jIZnkPbYc8vS10mpuvm0SJiYPKOuSQyf8nt2gsQltGoglHTnKD6KKC-9Zj6j/w320-h180/Data%20Pipeline%20Terms.png)
Here are some key terms commonly used in data pipelines 1. Data Sources Definition: Points where data originates (e.g., databases, APIs, files, IoT devices). Examples: Relational databases (PostgreSQL, MySQL), APIs, cloud storage (S3), streaming data (Kafka), and on-premise systems. 2. Data Ingestion Definition: The process of importing or collecting raw data from various sources into a system for processing or storage. Methods: Batch ingestion, real-time/streaming ingestion. 3. Data Transformation Definition: Modifying, cleaning, or enriching data to make it usable for analysis or storage. Examples: Data cleaning (removing duplicates, fixing missing values). Data enrichment (joining with other data sources). ETL (Extract, Transform, Load). ELT (Extract, Load, Transform). 4. Data Storage Definition: Locations where data is stored after ingestion and transformation. Types: Data Lakes: Store raw, unstructured, or semi-structured data (e.g., S3, Azure Data Lake). Data Warehous...