Posts

Showing posts with the label Solr

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

Use of Solr in the age of Big data

Lucene is a search library whereas Solr is the Web Application built on top of Lucene which simplify the use of underlying search features. Solr is the popular, blazing fast open source enterprise search platform from the Apache Lucene project. Its major features include powerful full-text search, hit highlighting, faceted search, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. 30+Highest+Paying+Jobs Solr is highly scalable, providing distributed search and index replication. It powers the search and navigation features of many of the world's largest Internet sites. Integration of Big Data into Data warehousing: Data Layer Technology Layer Analytics layer