Posts

Showing posts with the label Spark SQL

Featured Post

How to Check Column Nulls and Replace: Pandas

Image
Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

Spark SQL Query how to write it in Ten steps

Image
Spark SQL example The post tells how to write SQL query in Spark and explained in ten steps.This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the tables into two DataFrames. The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table. 1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS: $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs $ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs where HUE_HOME defaultsto /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue (package installation). 2. Start spark-shell: $ spark-shell 3. Create Hive tables sample_07 and sample_08: scala> sqlContext.sql("CREATE TABLE sample_07 (code string