Skip to main content

Featured post

5 Super SEO Blogger Tools

In this post, I have explained top blogging tools that need to be considered by every blogger. These tools help you write better SEO friendly blog posts.

1). Headline Analyzer The best tool is the EMV Headline Analyzer. When you enter the headline it analyzes it and gives you EMV ranking. When you get '50' and above it performs better SEO.

2). Headline Length Checker The usual headline length is 50 to 60 characters. Beyond that, the headline will get truncated and looks ugly for search engine users. The tool SERP Snippet Optimization Tool useful to know how it appears in the search results.

3). Free Submission to Search Engines The tool Ping-O-Matic is a nice free submission tool. After your blog post, you can submit your feed to Ping-O-Matic. It submits to search engines freely.

4). Spell and Grammar Check Another free tool is Grammarly, this tool checks your spelling and grammar mistakes. So that you can avoid small mistakes.

5). Keyword AnalyzerWordstream Keyword analyzer i…

Spark SQL Query how to write it in Ten steps

Spark SQL example
Spark SQL example
The post tells how to write SQL query in Spark and explained in ten steps.This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the tables into two DataFrames.

The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table.

1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS:
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs

where HUE_HOME defaultsto /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue
(package installation).

2. Start spark-shell:
$ spark-shell

3. Create Hive tables sample_07 and sample_08:

scala> sqlContext.sql("CREATE TABLE sample_07 (code string,description string,total_emp
scala> sqlContext.sql("CREATE TABLE sample_08 (code string,description string,total_emp

Also Read: Learn SparkSQL by your own with little money

4. In Beeline, show the Hive tables:
[0: jdbc:hive2://> show tables;
| tab_name |
16 | Spark Guide
Developing Spark Applications
| sample_07 |
| sample_08 |

Also read: The role of Spark in Hadoop eco system

5. Load the data in the CSV files into the tables:
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_07.csv' OVERWRITE INTO TABLE
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_08.csv' OVERWRITE INTO TABLE

6. Create DataFrames containing the contents of the sample_07 and sample_08 tables:
scala> val df_07 = sqlContext.sql("SELECT * from sample_07")
scala> val df_08 = sqlContext.sql("SELECT * from sample_08")

Apache Spark
7. Show all rows in df_07 with salary greater than 150,000:
scala> df_07.filter(df_07("salary") > 150000).show()
The output should be:
| code| description|total_emp|salary|
|11-1011| Chief executives| 299160|151370|
|29-1022|Oral and maxillof...| 5040|178440|
|29-1023| Orthodontists| 5350|185340|
|29-1024| Prosthodontists| 380|169360|
|29-1061| Anesthesiologists| 31030|192780|
|29-1062|Family and genera...| 113250|153640|
|29-1063| Internists, general| 46260|167270|
|29-1064|Obstetricians and...| 21340|183600|
|29-1067| Surgeons| 50260|191410|
|29-1069|Physicians and su...| 237400|155150|

8.Create the DataFrame df_09 by joining df_07 and df_08, retaining only the code and description columns.
scala> val df_09 = df_07.join(df_08, df_07("code") ===

The new DataFrame looks like:
| code| description|
|00-0000| All Occupations|
|11-0000|Management occupa...|
|11-1011| Chief executives|
|11-1021|General and opera...|
|11-1031| Legislators|
|11-2011|Advertising and p...|
|11-2021| Marketing managers|
|11-2022| Sales managers|
|11-2031|Public relations ...|
|11-3011|Administrative se...|
|11-3021|Computer and info...|
|11-3031| Financial managers|
|11-3041|Compensation and ...|
|11-3042|Training and deve...|
|11-3049|Human resources m...|
|11-3051|Industrial produc...|
|11-3061| Purchasing managers|
|11-3071|Transportation, s...|
|11-9011|Farm, ranch, and ...|

9. Save DataFrame df_09 as the Hive table sample_09:
scala> df_09.write.saveAsTable("sample_09")

10. In Beeline, show the Hive tables:
[0: jdbc:hive2://> show tables;
| tab_name |
| sample_07 |
| sample_08 |
| sample_09 |


Most Viewed

Tokenization story you need Vault based Vs Vault-less

The term tokenization refers to create a numeric or alphanumeric number in place of the original card number. It is difficult for hackers to get original card numbers.

Vault-Tokenization is a concept a Vault server create a new Token for each transaction when Customer uses Credit or Debit Card at Merchant outlets 
Let us see an example,  data analysis. Here, card numbers masked with other junk characters for security purpose.

Popular Tokenization ServersThere are two kinds of servers currently popular for implementing tokenization.
Vault-based Vault-less Video Presentation on Tokenization
Vault-based server The term vault based means both card number and token will be stored in a Table usually Teradata tables. During increasing volume of transactions, the handling of Table is a big challenge.
Every time during tokenization it stores a record for each card and its token. When you used a card multiple times, each time it generates multiple tokens. It is a fundamental concept.
So the challe…