Featured Post

SQL Query: 3 Methods for Calculating Cumulative SUM

SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences. Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle) SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum  FROM your_table; This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column. Using Subqueries (e.g., MySQL, SQLite): SELECT t1.id, t1.value, SUM(t2.value) AS cumulative_sum FROM your_table t1 JOIN your_table t2 ON t1.id >= t2.id GROUP BY t1.id, t1.value ORDER BY t1.id; This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than or

Spark SQL Query how to write it in Ten steps

Spark SQL example
Spark SQL example
The post tells how to write SQL query in Spark and explained in ten steps.This example demonstrates how to use sqlContext.sql to create and load two tables and select rows from the tables into two DataFrames.

The next steps use the DataFrame API to filter the rows for salaries greater than 150,000 from one of the tables and shows the resulting DataFrame. Then the two DataFrames are joined to create a third DataFrame. Finally the new DataFrame is saved to a Hive table.

1. At the command line, copy the Hue sample_07 and sample_08 CSV files to HDFS:
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_07.csv /user/hdfs
$ hdfs dfs -put HUE_HOME/apps/beeswax/data/sample_08.csv /user/hdfs

where HUE_HOME defaultsto /opt/cloudera/parcels/CDH/lib/hue (parcel installation) or /usr/lib/hue
(package installation).

2. Start spark-shell:
$ spark-shell

3. Create Hive tables sample_07 and sample_08:

scala> sqlContext.sql("CREATE TABLE sample_07 (code string,description string,total_emp
scala> sqlContext.sql("CREATE TABLE sample_08 (code string,description string,total_emp

Also Read: Learn SparkSQL by your own with little money

4. In Beeline, show the Hive tables:
[0: jdbc:hive2://hostname.com:> show tables;
| tab_name |
16 | Spark Guide
Developing Spark Applications
| sample_07 |
| sample_08 |

Also read: The role of Spark in Hadoop eco system

5. Load the data in the CSV files into the tables:
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_07.csv' OVERWRITE INTO TABLE
scala> sqlContext.sql("LOAD DATA INPATH '/user/hdfs/sample_08.csv' OVERWRITE INTO TABLE

6. Create DataFrames containing the contents of the sample_07 and sample_08 tables:
scala> val df_07 = sqlContext.sql("SELECT * from sample_07")
scala> val df_08 = sqlContext.sql("SELECT * from sample_08")

Apache Spark
7. Show all rows in df_07 with salary greater than 150,000:
scala> df_07.filter(df_07("salary") > 150000).show()
The output should be:
| code| description|total_emp|salary|
|11-1011| Chief executives| 299160|151370|
|29-1022|Oral and maxillof...| 5040|178440|
|29-1023| Orthodontists| 5350|185340|
|29-1024| Prosthodontists| 380|169360|
|29-1061| Anesthesiologists| 31030|192780|
|29-1062|Family and genera...| 113250|153640|
|29-1063| Internists, general| 46260|167270|
|29-1064|Obstetricians and...| 21340|183600|
|29-1067| Surgeons| 50260|191410|
|29-1069|Physicians and su...| 237400|155150|

8.Create the DataFrame df_09 by joining df_07 and df_08, retaining only the code and description columns.
scala> val df_09 = df_07.join(df_08, df_07("code") ===
scala> df_09.show()

The new DataFrame looks like:
| code| description|
|00-0000| All Occupations|
|11-0000|Management occupa...|
|11-1011| Chief executives|
|11-1021|General and opera...|
|11-1031| Legislators|
|11-2011|Advertising and p...|
|11-2021| Marketing managers|
|11-2022| Sales managers|
|11-2031|Public relations ...|
|11-3011|Administrative se...|
|11-3021|Computer and info...|
|11-3031| Financial managers|
|11-3041|Compensation and ...|
|11-3042|Training and deve...|
|11-3049|Human resources m...|
|11-3051|Industrial produc...|
|11-3061| Purchasing managers|
|11-3071|Transportation, s...|
|11-9011|Farm, ranch, and ...|

9. Save DataFrame df_09 as the Hive table sample_09:
scala> df_09.write.saveAsTable("sample_09")

10. In Beeline, show the Hive tables:
[0: jdbc:hive2://hostname.com:> show tables;
| tab_name |
| sample_07 |
| sample_08 |
| sample_09 |


Popular posts from this blog

How to Fix datetime Import Error in Python Quickly

Explained Ideal Structure of Python Class

How to Check Kafka Available Brokers