Featured Post

Step-by-Step Guide to Creating an AWS RDS Database Instance

Image
 Amazon Relational Database Service (AWS RDS) makes it easy to set up, operate, and scale a relational database in the cloud. Instead of managing servers, patching OS, and handling backups manually, AWS RDS takes care of the heavy lifting so you can focus on building applications and data pipelines. In this blog, we’ll walk through how to create an AWS RDS instance , key configuration choices, and best practices you should follow in real-world projects. What is AWS RDS? AWS RDS is a managed database service that supports popular relational engines such as: Amazon Aurora (MySQL / PostgreSQL compatible) MySQL PostgreSQL MariaDB Oracle SQL Server With RDS, AWS manages: Database provisioning Automated backups Software patching High availability (Multi-AZ) Monitoring and scaling Prerequisites Before creating an RDS instance, make sure you have: An active AWS account Proper IAM permissions (RDS, EC2, VPC) A basic understanding of: ...

5 SQL Queries That Popularly Used in Data Analysis

 Here are five popular SQL queries frequently used in data analysis.


5 SQL Queries Popularly Used in Data Analytics




1. SELECT with Aggregations

Summarize data by calculating aggregates like counts, sums, averages, etc.

SELECT department, COUNT(*) as employee_count, AVG(salary) as average_salary
FROM employees
GROUP BY department;


2. JOIN Operations

 Combine data from multiple tables based on a related column.

SELECT e.employee_id, e.name, d.department_name
FROM employees e
JOIN departments d ON e.department_id = d.department_id;

3. WHERE Clause for Filtering

Filter records based on specified conditions.

SELECT *
FROM sales
WHERE sale_date BETWEEN '2024-01-01' AND '2024-12-31'
  AND amount > 1000;

4. ORDER BY Clause for Sorting

Sort results in ascending or descending order based on one or more columns.

SELECT product_name, price
FROM products
ORDER BY price DESC;

5. GROUP BY with HAVING Clause

Group records and apply conditions to the aggregated results.

SELECT department, SUM(salary) as total_salaries
FROM employees
GROUP BY department
HAVING SUM(salary) > 50000;

Comments

Popular posts from this blog

Step-by-Step Guide to Reading Different Files in Python

SQL Query: 3 Methods for Calculating Cumulative SUM

PowerCurve for Beginners: A Comprehensive Guide