Showing posts with the label ibm pml

Featured Post

SQL Query: 3 Methods for Calculating Cumulative SUM

SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences. Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle) SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum  FROM your_table; This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column. Using Subqueries (e.g., MySQL, SQLite): SELECT, t1.value, SUM(t2.value) AS cumulative_sum FROM your_table t1 JOIN your_table t2 ON >= GROUP BY, t1.value ORDER BY; This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than or

IBM PML Vs Google MapReduce why you need to read

IBM Parallel Machine Learning Toolbox (PML) is similar to that of Google's MapReduce programming model (Dean and Ghemawat, 2004) and the open source Hadoop system,which is to provide Application Programming Interfaces (APIs) that enable programmers who have no prior experience in parallel and distributed systems to nevertheless implement parallel algorithms with relative ease. Google MapReduce Vs IBM PML Like MapReduce and Hadoop, PML supports associative-commutative computations as its primary parallelization mechanism .  Unlike MapReduce and Hadoop, PML fundamentally assumes that learning algorithms can be iterative in nature, requiring multiple passes over data. The ability to maintain the state of each worker node between iterations, making it possible, for example, to partition and distribute data structures across workers Efficient distribution of data, including the ability of each worker to read a subset of the data, to sample the data, or to scan the entire data