Showing posts with the label Dictionary

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

How to Access Dictionary Key-Value Data in Python

Use for-loop to read dictionary data in python. Here's an example of reading dictionary data. It's helpful to use in real projects. Python program to read dictionary data yearly_revenue = {    2017 : 1000000,    2018 : 1200000,    2019 : 1250000,    2020 : 1100000,    2021 : 1300000,  } total_income = 0 for year_id in yearly_revenue.keys() :   total_income+=yearly_revenue[year_id]   print(year_id, yearly_revenue[year_id]) print(total_income) print(total_income/len(yearly_revenue)) Output 2017 1000000 2018 1200000 2019 1250000 2020 1100000 2021 1300000 5850000 1170000.0 ** Process exited - Return Code: 0 ** Press Enter to exit the terminal Explanation The input is dictionary data. The total revenue sums up for each year. Notably, the critical point is using the dictionary keys method. References Python in-depth and sample programs