Posts

Showing posts with the label ibm-netteza

HBASE Vs. RDBMS Top Differences You can Unlock Now

Image
HBASE in the Big data context has a lot of benefits over RDBMS. The listed differences below make you understandable why HBASE is popular in Hadoop (or Bigdata) platform. Let us check one by one quickly. HBASE Vs. RDBMS Differences Random Accessing HBase handles a large amount of data that is store in a distributed manner in the column-oriented format while RDBMS is systematic storage of a database that cannot support a random manner for accessing the database. Database Rules RDBMS strictly follow Codd's 12 rules with fixed schemas and row-oriented manner of database and also follow ACID properties. HBase follows BASE properties and implement complex queries. Secondary indexes, complex inner and outer joins, count, sum, sort, group, and data of page and table can easily be accessible by RDBMS. Storage From small to medium storage application there is the use of RDBMS that provide the solution with MySQL and PostgreSQL whose size increase with concurrency and performance.  Codd'

Netezza tool real usage speeds up data analytics

The IBM Netezza data warehouse appliance is easy-to-use and dramatically accelerates the entire analytic process. The programming interfaces and parallelization options make it straightforward to move a majority of analytics inside the appliance, regardless of whether they are being performed using tools from such vendors as IBM SPSS, SAS, or Revolution Analytics, or written in languages such as Java,Lua, Perl, Python, R or Fortran. Additionally, IBM Netezza data warehouse appliances are delivered with a built-in library of parallelized analytic functions, purpose-built for large data volumes, to kick-start and accelerate any analytic application development and deployment. The simplicity and ease of development is what truly sets IBM Netezza apart. It is the first appliance of its kind – packing the power and scalability of hundreds of processing cores in an architecture ideally suited for parallel analytics. Instead of a fragmented analytics infrastructure with multiple systems