Posts

Showing posts with the label Sets

Featured Post

SQL Query: 3 Methods for Calculating Cumulative SUM

Image
SQL provides various constructs for calculating cumulative sums, offering flexibility and efficiency in data analysis. In this article, we explore three distinct SQL queries that facilitate the computation of cumulative sums. Each query leverages different SQL constructs to achieve the desired outcome, catering to diverse analytical needs and preferences. Using Window Functions (e.g., PostgreSQL, SQL Server, Oracle) SELECT id, value, SUM(value) OVER (ORDER BY id) AS cumulative_sum  FROM your_table; This query uses the SUM() window function with the OVER clause to calculate the cumulative sum of the value column ordered by the id column. Using Subqueries (e.g., MySQL, SQLite): SELECT t1.id, t1.value, SUM(t2.value) AS cumulative_sum FROM your_table t1 JOIN your_table t2 ON t1.id >= t2.id GROUP BY t1.id, t1.value ORDER BY t1.id; This query uses a self-join to calculate the cumulative sum. It joins the table with itself, matching rows where the id in the first table is greater than or

Sets Vs Lists Python Programmer Tips

Image
Sets are only useful when trying to ensure unique items are preserved. Before sets were available, it was common to process items and check if they exist in a list (or dictionary) before adding them. List example Here unique is an empty list. Every time I compare with this list, and if it is not duplicated then the input item will append to the unique list.  >>> unique = []  >>> for name in ['srini', 'srini', 'rao', 'srini']:  ... if name not in unique:  ... unique.append(name)  ... >>> unique ['srini', 'rao'] There is no need to do this when using sets. Instead of appending you add to a set: Set example >>> for name in ['srini', 'srini', 'rao', 'srini']: ... unique.add(name)  ...  >>> unique {'srini', 'rao'} Just like tuples and lists, interacting with sets have some differences on how to access their items. You can't index them like lists an