Posts

Showing posts with the label non-word

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

How to Find Non-word Character: Python Regex Example

Image
In Python, the regular expression pattern \W matches any non-word character. Here's an example of usage. The valid word characters are [a-zA-Z0-9_]. \W (upper case W) matches any non-word character. Regex examples to find non-word char #1 Example import re text = "Hello, world! How are you today?" non_words = re.findall(r'\W', text) print(non_words) In the above example, the re.findall() function is used to find all non-word characters in the text string using the regular expression pattern \W. The output will be a list of non-word characters found in the string: Output [',', '!', ' ', ' ', '?'] This includes punctuation marks and spaces but excludes letters, digits, and underscores, which are considered word characters in regular expressions. #2 Example import re text = "Hello, world! How are non-word-char:! you today?" non_words = re.findall(r'non-word-char:\W', text) print(non_words) Output ['non-wo