Posts

Showing posts with the label Cloudera Impala

Featured Post

Python: Built-in Functions vs. For & If Loops – 5 Programs Explained

Image
Python’s built-in functions make coding fast and efficient. But understanding how they work under the hood is crucial to mastering Python. This post shows five Python tasks, each implemented in two ways: Using built-in functions Using for loops and if statements ✅ 1. Sum of a List ✅ Using Built-in Function: numbers = [ 10 , 20 , 30 , 40 ] total = sum (numbers) print ( "Sum:" , total) 🔁 Using For Loop: numbers = [ 10 , 20 , 30 , 40 ] total = 0 for num in numbers: total += num print ( "Sum:" , total) ✅ 2. Find Maximum Value ✅ Using Built-in Function: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = max (values) print ( "Max:" , maximum) 🔁 Using For and If: values = [ 3 , 18 , 7 , 24 , 11 ] maximum = values[ 0 ] for val in values: if val > maximum: maximum = val print ( "Max:" , maximum) ✅ 3. Count Vowels in a String ✅ Using Built-ins: text = "hello world" vowel_count = sum ( 1 for ch in text if ch i...

Cloudera Impala top features useful for developers

Cloudera Impala that runs on Apache Hadoop. The program was proclaimed in October 2012 with a common beta trial dispersion. Popular usage is in data analytics.The key features useful for interviews. Impala The Apache-licensed Impala program begets scalable collateral database techniques to Hadoop, authorizing consumers to subject low-latency SQL requests to information kept in HDFS and Apache HBase short of needing information motion either alteration. Impala is amalgamated with Hadoop to employ the similar file and information setups, metadata, safeguarding and asset administration architectures applied by MapReduce, Apache Hive, Apache Pig and different Hadoop code. Impala Applications Impala is advanced for experts and information experts in science to accomplish systematic computational analysis of data or statistics on information kept in Hadoop through SQL either trade intellect implements.    The effect is that extensive information handling (via MapReduce) and tw...