Featured Post

How to Work With Tuple in Python

Image
Tuple in python is one of the streaming datasets. The other streaming datasets are List and Dictionary. Operations that you can perform on it are shown here for your reference. Writing tuple is easy. It has values of comma separated, and enclosed with parenthesis '()'. The values in the tuple are immutable, which means you cannot replace with new values. #1. How to create a tuple Code: Tuple example my_tuple=(1,2,3,4,5) print(my_tuple) Output: (1, 2, 3, 4, 5) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #2. How to read tuple values Code: print(my_tuple[0]) Output: 1 ** Process exited - Return Code: 0 ** Press Enter to exit terminal #3. How to add two tuples Code: a=(1,6,7,8) c=(3,4,5,6,7,8) d=print(a+c) Output: (1, 6, 7, 8, 3, 4, 5, 6, 7, 8) ** Process exited - Return Code: 0 ** Press Enter to exit terminal #4.  How to count tuple values Here the count is not counting values; count the repetition of a given value. Code: sample=(1, 6, 7, 8, 3, 4, 5, 6, 7, 8

Cloudera Impala top features useful for developers

Cloudera Impala that runs on Apache Hadoop. The program was proclaimed in October 2012 with a common beta trial dispersion. Popular usage is in data analytics.The key features useful for interviews.


Impala The Apache-licensed Impala program begets scalable collateral database techniques to Hadoop, authorizing consumers to subject low-latency SQL requests to information kept in HDFS and Apache HBase short of needing information motion either alteration.


Impala is amalgamated with Hadoop to employ the similar file and information setups, metadata, safeguarding and asset administration architectures applied by MapReduce, Apache Hive, Apache Pig and different Hadoop code.

Impala Applications

Impala is advanced for experts and information experts in science to accomplish systematic computational analysis of data or statistics on information kept in Hadoop through SQL either trade intellect implements. 

 
The effect is that extensive information handling (via MapReduce) and two-way requests may be completed on the similar configuration utilizing the similar information and metadata – eliminating the demand to wander information places in to specific setups and or exclusive setups plainly to accomplish examination. 


Features included
  • Supports HDFS#Hadoop_distributed_file_system|HDFS and Apache HBase storage
  • Reads Hadoop date setups, containing written material, LZO, SequenceFile, Avro and RCFile Supports Hadoop safeguarding (Kerberos authentication)
  • Fine-grained, Role-based allowance with Sentry Uses metadata, ODBC driver, and SQL structure as of Apache Hive

In first 2013, a column-oriented DBMS|column-oriented information setup named Parquet was proclaimed for designs containing Impala. In December 2013, Amazon Web Services proclaimed aid aimed at Impala.


Comments

Popular posts from this blog

7 AWS Interview Questions asked in Infosys, TCS

How to Decode TLV Quickly

Hyperledger Fabric: 20 Real Interview Questions