Showing posts with the label Data visualization

Featured Post

How to Check Column Nulls and Replace: Pandas

Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

What is so Trendy in Data Visualization and Reporting

Data Visualization: Data visualization is the process that defines any effort to assist people to understand the importance of data by placing it in a visual context.  Patterns, trends, and correlations that might be missed in text-based data can be represented and identified with data visualization software. It is a graphical representation of numerical data. This is one of the Hot skills in the market, you will get the highest salary. Types of data visualization Visual Reporting Visual reporting uses charts and graphics to represent business performance, usually defined by metrics and time-series information. The best dashboards and scorecards enable the users to drill down one or more levels to view more detailed information about a metric A dashboard is a visual exception report that signifies the ambiguities in performances using visualization techniques Visual Analysis Visual-analysis allows users to visually explore the data to observe the data and discove

5 Emerging Trends in Data Visualization

Nowadays, we deeply drowned in data of diverse kinds due to the increased computational power and accessibility. Specifically, in addition to public data available on the Internet (e.g., census, demographics, environmental data), data pertaining personal daily activities are now more easily collected. For example, through mobile devices that can log people's running distances and time or their manual record of nutrition consumption. Due to such expanded sources of data, there appear new applications that involve data collection, visualization, exploration, and distribution in daily contexts. These applications do, not only display static information but also let users navigate the data in forms of interactive visualizations. 5 Emerging Trends in Data Visualization. #1: This emerging trend has brought both opportunities and challenges to interaction designers to develop new approaches to designing data-based applications. #2: Conveying information has been one of main functio