Posts

Showing posts with the label role of nosql

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

Data Analytics Key Role of NOSQL

Traditional database theory dictates that you design the data set before entering any data. A data lake, also called an enterprise data lake or enterprise data hub, turns that model on its head, says Chris Curran, principal and chief technologist in PricewaterhouseCoopers’ U.S. advisory practice.  “It says we’ll take these data sources and dump them all into a big Hadoop repository, and we won’t try to design a data model beforehand,” he says. Instead, it provides tools for people to analyze the data, along with a high-level definition of what data exists in the lake. “People build the views into the data as they go along. It’s a very incremental, organic model for building a large-scale database,” Curran says. On the downside, the people who use it must be highly skilled Speed of NOSQL Alternatives to traditional SQL-based relational databases, called NoSQL (short for “Not Only SQL”) databases, are rapidly gaining popularity as tools for use in specific kinds of analytic applica