Posts

Showing posts with the label Data modelling Design

Featured Post

How to Check Column Nulls and Replace: Pandas

Image
Here is a post that shows how to count Nulls and replace them with the value you want in the Pandas Dataframe. We have explained the process in two steps - Counting and Replacing the Null values. Count null values (column-wise) in Pandas ## count null values column-wise null_counts = df.isnull(). sum() print(null_counts) ``` Output: ``` Column1    1 Column2    1 Column3    5 dtype: int64 ``` In the above code, we first create a sample Pandas DataFrame `df` with some null values. Then, we use the `isnull()` function to create a DataFrame of the same shape as `df`, where each element is a boolean value indicating whether that element is null or not. Finally, we use the `sum()` function to count the number of null values in each column of the resulting DataFrame. The output shows the count of null values column-wise. to count null values column-wise: ``` df.isnull().sum() ``` ##Code snippet to count null values row-wise: ``` df.isnull().sum(axis=1) ``` In the above code, `df` is the Panda

Top features in the design of data modelling (1 of 2)

Image
[Data modelling jobs career] The analogy with architecture is particularly appropriate because architects are designers and data modeling is also a design activity. In design, we do not expect to find a single correct answer, although we will certainly be able to identify many that are patently incorrect. Two data modelers (or architects) given the same set of requirements may produce quite different solutions. Data modeling is not just a simple process of "documenting requirements" though it is sometimes portrayed as such. Several factors contribute to the possibility of there being more than one workable model for most practical situations. First, we have a choice of what symbols or codes we use to represent real-world facts in the database. A person's age could be represented by Birth Date, Age at Date of Policy Issue, or even by a code corresponding to a range ("H" could mean "born between 1961 and 1970"). Second, there is usually more