Posts

Showing posts with the label r language vs excel

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

R Language Tutorial for Mainframe Programmers

Why R? It's free, open source, powerful and highly extensible. "You have a lot of prepackaged stuff that's already available, so you're standing on the shoulders of giants," Google's chief economist told The New York Times back in 2009. Free Resources on R Language Part 1: Introduction Part 2: Getting your data into R Part 3: Easy ways to do basic data analysis Part 4: Painless data visualization Part 5: Syntax quirks you'll want to know Part 6: Useful resources Details of R Language Because it's a programmable environment that uses command-line scripting, you can store a series of complex data-analysis steps in R. That lets you re-use your analysis work on similar data more easily than if you were using a point-and-click interface, notes Hadley Wickham, author of several popular R packages and chief scientist with RStudio. That also makes it easier for others to validate research results and check your work for errors -- an issue that