Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

R Language Tutorial for Mainframe Programmers

Why R? It's free, open source, powerful and highly extensible. "You have a lot of prepackaged stuff that's already available, so you're standing on the shoulders of giants," Google's chief economist told The New York Times back in 2009.

Free Resources on R Language

Details of R Language

Because it's a programmable environment that uses command-line scripting, you can store a series of complex data-analysis steps in R. That lets you re-use your analysis work on similar data more easily than if you were using a point-and-click interface, notes Hadley Wickham, author of several popular R packages and chief scientist with RStudio.

That also makes it easier for others to validate research results and check your work for errors -- an issue that cropped up in the news recently after an Excel coding error was among several flaws found in an influential economics analysis report known as Reinhart/Rogoff.

Why not R

Well, R can appear daunting at first. That's often because R syntax is different from that of many other languages, not necessarily because it's any more difficult than others.

How R is different from Excel

  • The R Language is different from Excel. In R you can use complex problems. Multiple sources of data you can do analyze in R Language.
  • In Excel, the capability of handling data sources is limited.
  • Connectivity to modern visualization tools like Tableau is cumbersome in Excel.

Where to download R-Free version

Comments

Popular posts from this blog

SQL Query: 3 Methods for Calculating Cumulative SUM

5 SQL Queries That Popularly Used in Data Analysis

Big Data: Top Cloud Computing Interview Questions (1 of 4)