Posts

Showing posts with the label analyst

Featured Post

Best Practices for Handling Duplicate Elements in Python Lists

Image
Here are three awesome ways that you can use to remove duplicates in a list. These are helpful in resolving your data analytics solutions.  01. Using a Set Convert the list into a set , which automatically removes duplicates due to its unique element nature, and then convert the set back to a list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = list(set(original_list)) 02. Using a Loop Iterate through the original list and append elements to a new list only if they haven't been added before. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] for item in original_list:     if item not in unique_list:         unique_list.append(item) 03. Using List Comprehension Create a new list using a list comprehension that includes only the elements not already present in the new list. Solution: original_list = [2, 4, 6, 2, 8, 6, 10] unique_list = [] [unique_list.append(item) for item in original_list if item not in unique_list] All three methods will result in uni

Old School Guide Data Analyst Responsibilities

Image
The results of your analysis may be super meaningful and obvious to you, but they won’t be to anyone else. That’s because you know what questions you were looking to answer when you set out to do the analysis in the first place. Your Role-You know exactly what data the dataset includes and excludes. Plus you wrote the queries that ultimately produced the visualization or report you’re looking at. That’s a lot of contexts that you need to share in order for other people to understand what the numbers mean. Sharing Results-When sharing the results of your analysis, write out the conclusions you are drawing from the data and what business actions you think should be taken as a result of the analysis (e.g. our conversion decreased with this latest release and we should rollback). Not only do other folks perhaps not have the context to interpret the data correctly, they probably don’t find it as fascinating as you do and may not have the time to derive meaning from the data. Communi

Here are 5 Skills You need to Become SAS Data Analyst

Image
Want to know what will happen in the future? Find the most lucrative opportunities? Get insights into impending outcomes? No problem. With our SAS data mining software, you can: SAS Data Analyst. Simplify data preparation. Interact with your data quickly and intuitively using dynamic charts and graphs to understand key relationships. Quickly and easily create better models. Take the guesswork out of building models that are both stable and accurate using proven techniques and a drag-and-drop interface that's both easy-to-use and powerful. Put your best models into service. Fast. Spend less time and effort scoring new data using automated, interactive processes that work in both batch and real-time environments. The requirement varies from company to company. I am giving here the basic skills you need for a SAS data analyst Experience in SAS or R analytics Scripting languages of Python/JavaScript/VB Script SQL and PL/SQL Databases knowledge in Oracle, DB2, SQL Server Hadoop and Big