Posts

Showing posts with the label IBM

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

Real thoughts on IBM power8 servers to use on analytics

Image
IBM Servers International Business Machines Corp, in its latest attempt at reviving demand for its hardware products, is launching high-end system servers that it says are 50 times faster than its closest competitor at analysing data.  The POWER8 servers , the product of a $2.4 billion, three-year investment, are part of the company's decade-long shift to higher-value hardware technology.    IBM  said the machines are 50 times faster than the low-end x86-based servers it sold to Chinese PC maker  Lenovo  Group Ltd in January.  The technology services provider said on Wednesday it hopes the servers, designed for large-scale computing, will appeal to clients looking to manage new types of social and mobile computing and mass amounts of data. Last week, the company reported its lowest quarterly revenue in five years, weighed down by falling demand for its storage and server products. IBM dominates the higher-end server market with 57 percent market share, according to res