Posts

Showing posts with the label python series

Featured Post

Step-by-Step Guide to Reading Different Files in Python

Image
 In the world of data science, automation, and general programming, working with files is unavoidable. Whether you’re dealing with CSV reports, JSON APIs, Excel sheets, or text logs, Python provides rich and easy-to-use libraries for reading different file formats. In this guide, we’ll explore how to read different files in Python , with code examples and best practices. 1. Reading Text Files ( .txt ) Text files are the simplest form of files. Python’s built-in open() function handles them effortlessly. Example: # Open and read a text file with open ( "sample.txt" , "r" ) as file: content = file.read() print (content) Explanation: "r" mode means read . with open() automatically closes the file when done. Best Practice: Always use with to handle files to avoid memory leaks. 2. Reading CSV Files ( .csv ) CSV files are widely used for storing tabular data. Python has a built-in csv module and a powerful pandas library. Using cs...

How to use Pandas Series Method top ideas

Image
Here is an example of how to use a Series constructor in Pandas. A one-dimensional array capable of holding any data type (integers, strings, floating-point numbers, Python objects, etc.) is called a Series object in pandas. Sample DataFrame Single dimension data Below is the single dimension data of Index and Value.  Index  Value  1  10                2  40  3  01  4  99 Having single value for an index is called Single dimensional data. On the other hand, when one index has multiple values, it is called multi-dimensional array.   Below is the example for Multi-dimensional array.  a = (1, (10,20)) mySeries =  pd. Series(data, index=index) Here, pd is a Pandas object. The data and index are two arguments. The  data refers to a Python dictionary of "ndarray"  and index is index of data. Generating DataFrame from single dimension data The below example shows, how ...