Posts

Showing posts with the label Columnar database

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

6 Advantages of Columnar Databases over Traditional RDBMS

Image
In traditional RDBMS, when a data source is accessed by multi users at single time, then database will go into deadlock state. One of the advantages of a columnar model is that if two or more users want to use a different subset of columns, they do not have to lock out each other.         (Superior benefits for NoSQL Jobs) This design is made easier because of a disk storage method known as RAID (redundant array of independent disks, originally redundant array of inexpensive disks), which combines multiple disk drives into a logical unit. Data is stored in several patterns called levels that have different amounts of redundancy. The idea of the redundancy is that when one drive fails, the other drives can take over. When a replacement disk drive in put in the array, the data is replicated from the other disks in the array and the system is restored. The following are the various levels of RAID: RAID 0 (block-level striping without parity or mirroring) has no (or zero) re