Posts

Showing posts with the label Apache Cassandra. Hadoop

Featured Post

The Quick and Easy Way to Analyze Numpy Arrays

Image
The quickest and easiest way to analyze NumPy arrays is by using the numpy.array() method. This method allows you to quickly and easily analyze the values contained in a numpy array. This method can also be used to find the sum, mean, standard deviation, max, min, and other useful analysis of the value contained within a numpy array. Sum You can find the sum of Numpy arrays using the np.sum() function.  For example:  import numpy as np  a = np.array([1,2,3,4,5])  b = np.array([6,7,8,9,10])  result = np.sum([a,b])  print(result)  # Output will be 55 Mean You can find the mean of a Numpy array using the np.mean() function. This function takes in an array as an argument and returns the mean of all the values in the array.  For example, the mean of a Numpy array of [1,2,3,4,5] would be  result = np.mean([1,2,3,4,5])  print(result)  #Output: 3.0 Standard Deviation To find the standard deviation of a Numpy array, you can use the NumPy std() function. This function takes in an array as a par

8 Top key points in Apache Cassandra in the age of Big data

Image
(Hadoop questions...) Decentralized:  Every knot within the array has the similar part. There is no sole point of letdown. Data is dispersed athwart the array (so every one node holds dissimilar data), however there is no principal as any knot may facility whatever appeal. Supports replication and multi information centre replication: Replication strategic plans are configurable. Cassandra is developed like a dispersed configuration, for distribution of great numerals of nodes athwart numerous information hubs. Key attributes of Cassandra’s dispersed design are especially custom-made for multiple-data centre distribution, for superfluity, for a procedure by which a system automatically transfers control to a duplicate system when it detects a fault or failure and calamity recuperation. Hadoop+Interview+Questions+Part-1 Scalability:  Read and record output either rise linearly as spic-and-span devices are appended, with no layoff either discontinuity to applications. Fault