Skip to main content

IBM Parallel Machine Learning Toolbox Basics

IBM Parallel Machine Learning Toolbox (PML) is similar to that of Google's MapReduce programming model (Dean and Ghemawat, 2004) and the open source Hadoop system,which is to provide Application Programming Interfaces (APIs) that enable programmers who have no prior experience in parallel and distributed systems to nevertheless implement parallel algorithms with relative ease. Like MapReduce and Hadoop, PML supports associative-commutative computations as its primary parallelization mechanism. Unlike MapReduce and Hadoop, PML fundamentally assumes that learning algorithms can be iterative in nature, requiring multiple passes over data. 

It also extends the associative-commutative computational model in various aspects, the most important of which are:

  • The ability to maintain the state of each worker node between iterations, making it possible, for example, to partition and distribute data structures across workers
  • Efficient distribution of data, including the ability for each worker to read a subset of the data, to sample the data, or to scan the entire dataset
  • Access to both sparse and dense datasets
  • Parallel merge operations using tree structures for efficient collection of worker results on very large clusters

In order to make these extensions to the computational model and still address ease of use, PML provides an object-oriented API in which algorithms are objects that implement a predefined set of interface methods. 

The PML infrastructure then uses these interface methods to distribute algorithm objects and their computations across multiple compute nodes. An object-oriented approach is employed to simplify the task of writing code to maintain, update, and distribute complex data structures in parallel environments.

Several parallel machine learning and data mining algorithms have already been implemented in PML, including Support Vector Machine (SVM) classifiers, linear regression, transform regression, nearest neighbors classifiers, decision tree classifiers, k-means, fuzzy k-means, kernel k-means, principal component analysis (PCA), kernel PCA, and frequent pattern mining. 

Comments

Popular posts

Blue Prism complete tutorials download now

RPA blue prsim tutorial popular resources I have given in this post. You can download quickly.Learning Blue Prism is really good option if you are learner of Robotic process automation. The RPA is also called "Robotic Process Automation"- Real advantages are you can automate any business process and you can complete the customer requests in less time.

The Books Available on Blue Prism 
Blue Prism resourcesDavid chappal PDF bookBlue Prism BlogsVideo Training
RPA training The other Skills you need
Basic business skills and Domain skills are more than enough to be successful in this automation careerScripting languages like Perl/JSON/JavaScript/VBScript.  The interesting point is learning any RPA tool is not a problem. You can learn tool quickly. The real point is how quickly you apply your knowledge to implement automated tasks is important.


Also read
Robotic RPA Software developer skills you needBlue Prism tutorials download to learn quicklyPopular RPA tools functionality differen…

Three popular RPA tools functional differences

Robotic process automation is growing area and many IT developers across the board started up-skill in this popular area. I have written this post for the benefit of Software developers who are interested in RPA also called Robotic Process Automation.

In my previous post, I have described that total 12 tools are available in the market. Out of those 3 tools are most popular. Those are Automation anywhere, BluePrism and Uipath. Many programmers asked what are the differences between these tools. I have given differences of all these three RPA tools.

BluePrismBlue Prism has taken a simple concept, replicating user activity on the desktop, and made it enterprise strength. The technology is scalable, secure, resilient, and flexible and is supported by a comprehensive methodology, operational framework and provided as packaged software.The technology is developed and deployed within a “corridor of IT governance” and has sophisticated error handling and process modelling capabilities to ensu…

Robotic RPA Software developer skills you need

Robotic process automation is an upcoming and becoming most popular skill. As I said there are three popular tools. To become proficient in any one of the tool is really good to get a job in Developer role.
To get a job in this line, I found in my research that some programming skills and Hand-on training on any one of the tools is required. Also, try to to know differences in other popular rpa tools.

Most people are asking experience in tools like Automation anywhare, Blue Prism and Uipath. But, you cannot be proficient in all. So just know what are the differences. Ok...
You may ask a question like how to know. First join one good coaching institute and learn one tool perfectly. And start taking online training. Really good for you. Whatever you are lacking quickly you can learn online way.

To learn Uipath try here. Also, you can learn Automation anywhere tool online way.

The following are the list of IT skills commonly asking:
Automation anywhere/Blue Prism/Uipath.Net/C#/Java/SQL ski…