Skip to main content

15 Awesome Features Should Present in Big Data System

Really good post. I have given useful points on the features of big data system. If there are no right features, you will miss the benefits that you get from big data.

What does traditional BI tools....

Read next step...

Traditional tools quickly can become overwhelmed by the large volume of big data. Latency—the time it takes to access the data—is as an important a consideration as volume.

A little difference is there...

Suppose you might need to run an ad hoc query against the large data set or a predefined report.

A large data storage system is not a data warehouse, however, and it may not respond to queries in a few seconds. It is, rather, the organization-wide repository that stores all of its data and is the system that feeds into the data warehouses for management reporting.
Big data top components
Image courtesy|Stockphotos.io
Big data needs to be considered in terms of how the data will be manipulated. The size of the data set will impact data capture, movement, storage, processing, presentation, analytics, reporting, and latency.

Key features of Big data system
  1. A method of collecting and categorizing data
  2. A method of moving data into the system safely and without data loss
  3. A storage system that is distributed across many servers
  4. Is scalable to thousands of servers
  5. Will offer data redundancy and backup
  6. Will offer redundancy in case of hardware failure
  7. Will be cost-effective
  8. A rich tool set and community support
  9. A method of distributed system configuration
  10. Parallel data processing
  11. System-monitoring tools
  12. Reporting tools: ETL-like tools (preferably with a graphic interface) that can be used to build tasks that process the data and monitor their progress
  13. Scheduling tools to determine when tasks will run and show task status
  14. The ability to monitor data trends in real time
  15. Local processing where the data is stored to reduce network bandwidth usage 
Related Content: 13 Must Read Blogs in Data and Analytics

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:
EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.
CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice