Skip to main content

Top features of Apache Avro in Hadoop eco-System

Avro defines a data format designed to support data-intensive applications, and provides support for this format in a variety of programming languages.

The Hadoop ecosystem includes a new binary data serialization system — Avro. 

Avro provides:
·     Rich data structures.

·         A compact, fast, binary data format.
·         A container file, to store persistent data.
·         Remote procedure call (RPC).
·       Simple integration with dynamic languages. Code generation is not required to read or write data files nor to use or implement RPC protocols. Code generation as an optional optimization, only worth implementing for statically typed languages.

Its functionality is similar to the other marshaling systems such as Thrift, Protocol Buffers, and so on.

The main differentiators of Avro include the following:

[Hadoop Interview Questions]
[Hadoop Interview Questions]
Dynamic typing — The Avro implementation always keeps data and its corresponding schema together. As a result, marshaling/unmarshaling operations do not require either code generation or static data types. This also allows generic data processing.

Untagged data — Because it keeps data and schema together, Avro
marshaling/unmarshaling does not require type/size information or manually assigned IDs to be encoded in data. As a result, Avro serialization produces a smaller output.

Enhanced versioning support — In the case of schema changes, Avro contains both schemas, which enables you to resolve differences symbolically based on the field names.
Because of high performance, a small codebase, and compact resulting data, there is a wide adoption of Avro not only in the Hadoop community, but also by many other NoSQL implementations (including Cassandra).

At the heart of Avro is a data serialization system. Avro can either use reflection to dynamically generate schemas of the existing Java objects, or use an explicit Avro schema — a JavaScript Object Notation (JSON) document describing the data format. Avro schemas can contain both simple and complex types.

Simple data types supported by Avro include null, boolean, int, long, float, double, bytes, and string. Here, null is a special type, corresponding to no data, and can be used in place of any data type.

Complex types supported by Avro include the following:
Record — This is roughly equivalent to a C structure. A record has a name and optional namespace, document, and alias. It contains a list of named attributes that can be of any Avro type.
Enum — This is an enumeration of values. Enum has a name, an optional namespace, document, and alias, and contains a list of symbols (valid JSON strings).
Array — This is a collection of items of the same type.
Map — This is a map of keys of type string and values of the specified type.
Union — This represents an or option for the value. A common use for unions is to specify nullable values.

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:
EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.
CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice