Skip to main content

How Netezza a powerful appliance for Data Warehouse

(Jobs on NeteZZA)
The IBM Netezza data warehouse appliance is easy-to-use and dramatically accelerates the entire analytic process. The programming interfaces and parallelization options make it straightforward to move a majority of analytics inside the appliance, regardless of whether they are being performed
using tools from such vendors as IBM SPSS, SAS, or Revolution Analytics, or written in languages such as Java,Lua, Perl, Python, R or Fortran. Additionally, IBM Netezza data warehouse appliances are delivered with a built-in library of parallelized analytic functions, purpose-built for large data
volumes, to kick-start and accelerate any analytic application development and deployment.

The simplicity and ease of development is what truly sets IBM Netezza apart. It is the first appliance of its kind – packing the power and scalability of hundreds of processing cores in an architecture ideally suited for parallel analytics. Instead of a fragmented analytics infrastructure with multiple systems where data is replicated, IBM Netezza Analytics consolidates all analytics activity in a powerful appliance. 

It is easy to deploy and requires minimal ongoing administration, for an overall low total cost of ownership. Simplifying the process of exploring, calculating, modeling and scoring data are key drivers for successful adoption of analytics companywide. With IBM Netezza, business users
can run their own analytics in near real time, which helps analytics-backed, data-driven decisions to become pervasive throughout an enterprise.

What is Netezza (Ref: wiki)

Netezza (pronounced Ne-Tease-Ah) designs and markets high-performance data warehouse appliances and advanced analytics applications for uses including enterprise data warehousing, business intelligence, predictive analytics and business continuity planning.

Founded in 1999 by Foster Hinshaw, Netezza was purchased by IBM in 2010 for $1.7 billion. Netezza and Hinshaw are credited with creating the data warehouse appliance category to address consumer analytics efficiently by providing a modular, scalable, easy-to-manage database system that’s cost effective. This class of machine is necessary to manage the "data-intense" workloads of modern analytics and discovery that are not well handled with legacy technologies, most of which are designed around traditional "computer-centric" workloads.

Netezza's implementation is characterized by:

(a) data-intelligent shared-nothing architecture, where the entire query is executed on the nodes with emphasis on minimizing data movement; 
(b) use of commodity FPGA's to augment the CPU's and minimize network bus traffic; and 
(c) embedded analytics at the storage level.

Comments

Popular posts from this blog

Four Tableau products a quick review and explanation

I want to share you what are the Products most popular.

Total four products. Read the details below.

Tableau desktop-(Business analytics anyone can use) - Tableau  Desktop  is  based  on  breakthrough technology  from  Stanford  University  that  lets  you drag & drop to analyze data. You can connect to  data in a few clicks, then visualize and create interactive dashboards with a few more.

We’ve done years of research to build a system that supports people’s natural  ability  to  think visually. Shift fluidly between views, following your natural train of thought. You’re not stuck in wizards or bogged down writing scripts. You just create beautiful, rich data visualizations.  It's so easy to use that any Excel user can learn it. Get more results for less effort. And it’s 10 –100x faster than existing solutions.

Tableau server
Tableau  Server  is  a  business  intelligence  application  that  provides  browser-based  analytics anyone can use. It’s a rapid-fire alternative to th…

The Sqoop in Hadoop story to process structural data

Why Sqoop you need while working on Hadoop-The Sqoop and its primary reason is to import data from structural data sources such as Oracle/DB2 into HDFS(also called Hadoop file system).
To our readers, I have collected a good video from Edureka which helps you to understand the functionality of Sqoop.

The comparison between Sqoop and Flume

The Sqoop the word came from SQL+Hadoop Sqoop word came from SQL+HADOOP=SQOOP. And Sqoop is a data transfer tool. The main use of Sqoop is to import and export the large amount of data from RDBMS to HDFS and vice versa. List of basic Sqoop commands Codegen- It helps to generate code to interact with database records.Create-hive-table- It helps to Import a table definition into a hiveEval- It helps to evaluateSQL statement and display the resultsExport-It helps to export an HDFS directory into a database tableHelp- It helps to list the available commandsImport- It helps to import a table from a database to HDFSImport-all-tables- It helps to import tables …

Different Types Of Payment Cards

The Credit Card (Shopping): The purpose o this card is to buy any item withing the limit prescribed by banks to cardholder. These cards can have both Magnetic stripe and Chip cards. 
Now a days all banks are issuing credit cards with CHIP and PIN. After entering the PIN by cardholder, then transaction starts for further processing.

The debit (ATM, Cash) card is a relatively new method of payment. It is different from a credit card because the debit cardholder pays with the money available in their bank account, which is debited immediately in real time. A debit card seems to be more dangerous compared to a credit card because the debit card is directly linked to the bank checking account and usually allows ATM cash withdrawals.

On the other hand, it is more protected by the required two-factor authentication (PIN number plus card itself). The real dangerous element of many branded debit cards is that they can be processed as credit cards, without entering the PIN.

The Gift card
is simila…