Skip to main content

The best SAN applications being used in real time

#SAN-Storage-area-applications
#SAN-Storage-area-applications:
The storage area network fundamentals everyone must know you understand about applications. These applications may refer to horizontal applications (e.g., backup, archiving, data replication, disaster protection, and data warehousing) or vertical applications (e.g., online transaction processing (OLTP), enterprise resource planning (ERP) business applications, electronic commerce, broadcasting, prepress, medical, and geophysics).
SAN is also well suited to making performance and high availability more scalable and more affordable in applications such as clustering and data sharing. This article discusses two major horizontal applications, backup and data sharing, and how they interact with SAN.
The other important point is, if you are a job seeker the below list is helpful. This is just a like a one time SAN interviews refresher. So you can do well in interviews.

Realtime (or window-less) backup: The importance of window-less backup (also called hot backup) becomes obvious when it addresses the large volume of data in a SAN centralized backup library. Realtime backup essentially lets you back up a volume or file periodically and automatically without affecting normal system operations. The technique commonly used is called a snapshot, where you make a copy of the volume needing backup, and then back up the copy while accessing and modifying the original volume in normal operations. Network Integrity leads in development, and EMC and HDS have implemented solutions in currently available products. Major providers of total backup solutions include ADIC, ATL, StorageTek, Hewlett-Packard (HP), Exabyte, and Overland.

Resource sharing: A storage subsystem attached to multiple computer platforms is divided into partitions, each partition being accessible only to its owning platform or to a certain number of homogeneous platforms. The administrator can reassign storage capacity to different platforms as needs change. One of the benefits of SAN connectivity is its ability to share resources (e.g., a large tape library) among multiple backup servers. Such sharing enables administrators to consolidate backups-from many different servers to locally attached tape drives-into one tape library.

Dynamic resource sharing: All storage is available to any connected host; hosts are allocated storage as they need it. If one host needs the storage, it can use any or all the available space. If a host deletes a file, that space is available to any other host. This dynamic storage sharing operates automatically and transparently. Dynamic resource sharing means that the systems administrator doesn't have to partition the storage before storing the data.

Data copy sharing: This process involves replication of the data. Data is the same across copies at the time of copy creation, but the copies can change independently afterward. There is no assurance that they will remain identical. Data access is usually prevented during replication so the copy accurately reflects all the data at a particular time. For large amounts of data, the time needed to copy it may be important, , and the amount of storage necessary to store the copy could be very large. SAN facilitates data-copy sharing by allowing high-bandwidth connections to transfer large volumes of data.

Related: The best SAN fundamentals

True data sharing. If you are sharing data without making a copy, multiple computer platforms can access the same physical instance of the recorded data on a storage subsystem. This type of sharing is called true data sharing. Different levels of performance and complexity exist in implementing true data sharing:
  • The first level is when heterogeneous platforms can access data, but only the original data owner can modify it.
  • The second level is when multiple heterogeneous platforms can update and rewrite a data item, but only one at a time. In this case, you must use a locking mechanism to momentarily prevent a platform from updating the data. 
  • The third level is called concurrent data sharing and exists when all platforms can either read or update the data at the same time. The advantages of true data sharing are numerous. With only one copy of data, you never need to replicate the data for use elsewhere, you simplify data maintenance, and you eliminate problems due to out of sync conditions. True Data Sharing among platforms running heterogeneous operating systems requires translating to one common operating system. Examples of vendors offering implementations of true data sharing in a SAN architecture are Sequent, Mercury Computer Systems, DataDirect, Transoft, Retrieve, and Network Disk.

Comments

Popular posts from this blog

The best 5 differences of AWS EMR and Hadoop

With Amazon Elastic MapReduce (Amazon EMR) you can analyze and process vast amounts of data. It does this by distributing the computational work across a cluster of virtual servers running in the Amazon cloud. The cluster is managed using an open-source framework called Hadoop.

Amazon EMR has made enhancements to Hadoop and other open-source applications to work seamlessly with AWS. For example, Hadoop clusters running on Amazon EMR use EC2 instances as virtual Linux servers for the master and slave nodes, Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms.

You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster.


What does Hadoop do...

Hadoop uses a distributed processing architecture called MapReduce in which a task is mapped to a set of servers for proce…

5 Things About AWS EC2 You Need to Focus!

Amazon Elastic Compute Cloud (Amazon EC2) - is a web service that provides resizable compute capacity in the cloud. It is designed to make web-scale cloud computing easier for developers.
Amazon EC2’s simple web service interface allows you to obtain and configure capacity with minimal friction.

The basic functions of EC2... 
It provides you with complete control of your computing resources and lets you run on Amazon’s proven computing environment.Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, allowing you to quickly scale capacity, both up and down, as your computing requirements change.Amazon EC2 changes the economics of computing by allowing you to pay only for capacity that you actually use. Amazon EC2 provides developers the tools to build failure resilient applications and isolate themselves from common failure scenarios. 
Key Points for Interviews:

EC2 is the basic fundamental block around which the AWS are structured.EC2 provides remote ope…

6 Most Popular IoT Protocols Currently Being Used

The below is complete list of Protocols being used in Internet of things projects.

CoAP: Constrained Application Protocol. MQTT: Message Queue Telemetry Transport. XMPP: Extensible Messaging and Presence Protocol. RESTFUL Services: Representational State Transfer. AMQP: Advanced Message Queuing Protocol Websockets. 
Related:
5 Challenges in Internet-of-things mostly people look inHot IT Skills by Udemy and Dice